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Summary. The dynamic crystal field operators, corresponding to the normal 
point-charge displacements in an octahedral complex are analyzed in detail. 
The strict equivalence of absolute versus relative coordinate treatments is 
established. The resulting formalism is applied to the intensity distribution in 
the vibronic side bands of the sharp line luminescence spectra of d 3 com- 
plexes. Thereby special attention is given to the role of spin-orbit coupling 
and to the elastic properties of the molecular force field. Using the closure 
procedure, the relative intensities of the side bands may be expressed in terms 
of a single dynamic crystal field parameter. These expressions provide a 
simple rationalization of the observed vibronic selection rules, entirely within 
the framework of dynamic crystal field theory. 

Key words: Dynamic crystal field t h e o r y -  Vibronic c o u p l i n g -  Vibronic 
selectivity - -  d 3 Complexes. 

1. Introduction 

Parity forbidden d - d  bands in centrosymmetric transition-metal complexes may 
acquire intensity through vibronic coupling with ungerade vibrational modes. 
The resulting transitions are found to be based on false origins involving single 
quanta of the allowing vibrations. More than thirty years ago a crystal field 
formalism was proposed for the quantitative calculation of the associated 
oscillator strengths [ 1, 2]. Since then, several authors have contributed to the 
development and refinement of this formalism, and extended its use to the 
description of vibronic intensities for f - f  transitions [3-5]. Nonetheless, in spite 
of its apparent simplicity, the original model continues to attract attention. Two 
recent applications deal with the phosphoresence spectra of d 3 ions in an 
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octahedral environment. On the one hand, Kupka et al. [6] have calculated the 
intensity distribution in the vibronic side bands of the Fy(2T2g)--*F8(4A2g) 
emission of ReCI6 2 - and ReBr~- ions in various cubic host crystals, while on the 
other hand, Acevedo and Flint [7] have concentrated on the intensities of the 
2Eg-~4A2g transition of the MnF62- ion. Both studies are based on the same 
linear vibronic coupling mechanism, starting from a similar point charge approx- 
imation. However they diverge in the use of external versus internal displacement 
coordinates. Furthermore, both treatments suffer from the presence of errors 
which may give rise to considerable confusion. To clarify this issue, we intend to 
present here a rigorous analysis of the correct formalism, which will clearly 
demonstrate the equivalence of the treatments in [6] and [7]. Furthermore, this 
dynamic crystal field model will be applied to the well-documented observation 
of vibronic selectivity in the phosphorescence spectra of d 3 complexes. 

2. The crystal field formalism 

In this section we review the construction of the vibronic coupling operators for 
the odd parity modes in a M L  6 complex with Oh symmetry. At first the treatment 
uses the absolute displacement coordinates, defined by Kupka et al. [6]. Next the 
operators are rewritten in relative internal coordinates. This allows one to 
establish a relationship between the formalisms in [6] and [7]. Finally the 
resulting expressions for vibronic intensity are presented. 

2.1. Construction of the coupling operators in absolute coordinates 

The d electrons experience the attractive force of the metal nucleus and the 
repulsive forces of the surrounding ligands. Both metal and ligand displacements 
may thus give rise to vibronic coupling. It will be assumed that the coupling to 
the metal displacement is very strong, so that the electrons follow the motions of 
the metal instantaneously. Under such an adiabatic assumption, the radius vector 
of electron i, ri, is effectively centered on the metal [8]. In contrast, the radius 
vectors of metal and ligand L, denoted as RM and RL respectively, are defined 
with respect to a fixed coordinate origin, as depicted below. 

e -  
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The crystal field potential for an hexacoordinated complex in the above 
coordinate frame is expressed in the following way: 

- ~ IqL le2 I' (1) 
- ~ Ie~ + r, - e~  

~/'(RM, RL) 
i = l L = l  

where qL e is the formal ligand charge. 
I f  the metal is fixed in the origin of  the coordinate frame, this expression may 

be converted to the usual form of the crystal field potential: 

.¢/.(0, RL) = ~ ~[qL]e2~  ~l 4rr r~ 
i=,L=, ,=Om=_t2l+ l Rl+ 1Ytm(i)Y~(L ). (2) 

Here RL is the meta]-ligand distance and ri represents the radial coordinate of 
electron i; Y~m is the usual spherical harmonic function [9]. The Im basis may be 
transformed to a F7 basis, which is adapted to the point group symmetry of the 
complex: 

I 4x r; t • 
Y,~ O) ?~(L). ~(0 ,  RL) -- E E IqL I e2 E 21 + 1 R~ +' (3) 

i L zF), 

It  should be kept in mind that this expression is only valid for r; < RL. The index 
r accounts for multiple occurrence of the F representation in the decomposition 
of a given l set. The standard forms of the relevant odd Ytt,u(i ) and Y~2u(i) 
functions, with l = 1, 3, 5, are given in Table 1. 

To first order, the crystal field potential may be rewritten as the sum of the 
static crystal field potential and a vibronic coupling term which is linear in the 
nuclear displacements. 

~i/'(RM' RL) = ~F'( O' R° ) + ~" ( ~SA~ (4) 

Here R ° denotes the equilibrium position of ligand L. SA~ refers to a symmetry 
coordinate which transforms as the $ component  of  the A representation of  Oh. 
Eventually an index may be added which distinguishes different coordinates of  

Table 1. Standard symmetry adapted forms of the spherical harmonic functions of 
t,u and t2~ symmetry a. Only the z components are shown 

tluZ t2uZ 

t= l Yo' - 

1 = 3 Y°3 ~22 (Y~ + Y3-2) 

, = 5 a Yo ~ ~ ( y ~ +  y~_2) 

b ~2 (Y4~ + Y~-') --  

a The multiplicity labels a and b distinguish the two tl~ representations contained in 
the 1 = 5 functions 
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the same symmetry. In an octahedron the odd parity coordinates, which will 
induce electric transition dipoles, are of tlu and t2u symmetry. Following the 
conventions of Kupka et al., the z components of these coordinates are defined 
as 

S A .M_ l ( z  I + Z 2 --[- Z 4 --~ Z 5 )  , t lu g 

1 S s 
r l u z  - -  / ~  ( Z 3  -[- Z 6 )  , 

X/z (5) 
C __ St~u~ -- Z M ,  

1 
S,2u  = - z 2  + z 4  - z s ) .  

Here, X, Y and Z refer to cartesian displacement coordinates of the nuclei in an 
external coordinate system, as shown in Fig. 1. The central metal ion is placed 
in the origin of this system. A, B and C are indices which account for the 
presence of three different tlu coordinates. In the formalism of Kupka et al., the 
vibronic coupling operator in Eq. (4) is now rewritten as 

( ~ S A ~ ) o = ~  A,~Ar~Yt~A;(i)" (6) 

If SAx displaces ligands only, the coupling constants At~a which appear in Eq. (6) 
may easily be derived by differentiating the crystal field potential ~e'(0, RL) in Eq. 
(3). In doing so, it must be kept in mind that a A2 type displacement will only 
affect the F7 = A2 terms in ~ .  Hence 

0 1 
Al*A = ~L 4~IqLle2 (-~SAa RTL+l 1 (7) 

It can easily be demonstrated that this expression is indeed independent [10] of 
the subrepresentations 2. For the S c coordinate, which refers to the displace- t lu  

ment of the central metal ion, the calculation of the A constants is less obvious, 
since the appropriate coordinates are not contained in ~(0 ,  RL). However, from 

×3/ 

xU 

73 

¥3 

Y 
l: Fig 1. Coordinate system and Cartesian displacement 

coordinates of ligand 3 
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Eq. (1) the following equality may easily be shown to hold: 

~ ( R M ,  RL) ~ ( R M ,  RL) 
~Xo YL aXL (8) 

This equality indicates that a displacement of  the metal nucleus has the same 
effect on the potential as a uniform displacement of  all ligands in the opposite 
direction. It is a direct consequence of  the adiabatic coupling between the 
electrons and the metal displacement. Equation (8) may be rewritten as 

ff~o + ~ ~(RM, RL) =0,  (9) 

and similarly for the Y and Z components. 
In this way the vibronic coupling constants, associated with a moving central 

cation, may be related to the A constants of the peripheral modes, yielding 

A ~ ~ =0 .  (10) A l, t ju + 2A l, t lu + A t, t i, 

The resulting coupling constants are collected in Table 2. It may be noted that 
the signs of  these constants can be verified easily, using a simple pictorial 
representation. This is exemplified in Fig. 2, which shows a polar representation 
of the appropriate multipole components, in combination with the usual arrows 
that indicate the direction of ligand motion for positive values of S. Whenever the 

ligands are moving towards the positive lobes o f  the multipole functions,  the 
corresponding A constant must  be positive. Otherwise it will be negative. 

In the paper by Kupka et al. the signs of the A B parameters were l*t lu 

misprinted. Unfortunately this error has propagated into the calculation of  the 
A t c, values giving rise to erroneous numerical results. On the other hand, it may 

lu 

be verified that the vibronic coupling operators of Acevedo and Flint [7, 11] 
coincide with the present results; however, these authors refer to internal 

C coordinates (vide infra, Sect. 2.2), and so do not specify the AI,,t~ constants. For 

Table 2. Coupling parameters At, A for the odd parity modes in an octahedral complex a 

A B C 
A lzt lu m lzt lu a l i t  lu A l ,  tz~ 

/=1 

/=3 

l = 5 a  

4 -8 0 0 

- -6~7  - - 1 6 ~ 4  4W/'~ 2 1 /~  ~ 
~ / 7  

15 /-~- ~ 2  ~ 1  2 ~ 11 -24 9 ~/ l i  

0 2~/ 11 ~/ ll 0 

a All values must be multiplied by IqL le2/R~ + 2. The multiplicity labels a and b are defined 
in Table 1 
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Fig. 2. Pictorial representation of the coupling constants A A A A lt,~ (a) and 3,1u (b). The ligands are 
displaced towards the positive lobe of Yo ~ , but towards the negative lobes of I:3 (only the yz plane 
is shown). Accordingly A A will be positive, while A~t ~ is negative (see Table 2) l t l u  u 

the moment  we will pursue the absolute coordinate treatment of  Kupka  et al., 
which is more transparent as far as the translational invariance of the resulting 
coordinates is concerned. 

The final step of their treatment involves the transformation from symmetry 
coordinates SAX to normalized mass-weighted normal coordinates Qv, which 
diagonalize the molecular force field. In the case of  the t2u representation this 
transformation is trivial since there is only one normal mode of  t2u symmetry. In 
contrast, the transformation from the three mass-weighted Squ coordinates (see 
Eq. (5)) to the normal coordinates of  tl~ symmetry requires an orthogonal 3 x 3 

matrix a. One has 

S:,o,/, 
\a: a; s o,/ 

Q6p = ~/mst2~p. (11) 

In Eq. (11) Q3 and Q4 are the usual designations for the high and low frequency 
tlu modes, Qt refers to the translational mode at zero frequency, Q6 is the t2u 
mode and M and m are the masses of  the central metal and a ligand point 
respectively; p stands for the x, y or z components of  t~u and t2u. The actual 
values of  the matrix elements depend on the elastic properties of  the molecule. 
Detailed force field calculations will be presented in Sect. 4. The vibronic 
coupling operator may now be rewritten as a function of the normal modes: 

Combining Eqs. (6) and (11), the linear coupling terms for the tlu operator 



Dynamical crystal field model 91 

in an octahedral complex are found to be 

( ) ~ AAA B B a v A m ~ u ~ r , y ,  . . .  (13) av l.Ct l u av A l~t lu c c 

with v = 3, 4, t and p = x, y, z. Likewise one has for the t2, mode, 

O~  
At~ .  r~ Y~, :.p(i). (14) 

For  the translational motion the a coefficients are simple functions of  the 
nuclear masses, namely 

at ~ = [4m/(6m + M)] 1/:, 

at B = [2m/(6m + M)] ~/z, (15) 

a c = [M/(6m + M)] 1/:. 

Inserting these values in Eq. (13) yields 
' 

0~e" = 2 2 2 { 2 A ~  t .k_N//~Atzt, .k. lzt'"} (6m k- m )  1/2" 
1. 2 B A c riY~t~,p(t) (16) 

0 i l 

In view of the zero condition in Eq. (10), this expression is seen to vanish, as 
required by the translational invariance of the vibronic coupling operator. This 
concludes our discussion of the coupling formalism in absolute coordinates. 
Subsequently We will consider the transformation to an internal coordinate 
system. 

2.2. Construction o f  the coupling operators in a relative coordinate system 

Since an overall translation has no vibronic effect, the previous treatment may be 
reformulated in a relative coordinate system of  internal nuclear coordinates. 
Such a coordinate change will affect two important steps of  the formalism, viz. 
the calculation of the vibronic coupling constants At~A and the transformation of  
symmetry coordinates to normal coordinates. Evidently the invariance of  the 
formalism as a whole can only be guaranteed if both steps make use of  the same 
conventions. 

Acevedo and Flint [7] base their treatment on the internal symmetry coordi- 
nates of Liehr and Ballhausen [12]. These are obtained from the absolute 
coordinates in Eq. (5) by relating all ligand displacements to the metal displace- 
ment rather than to the coordinate origin. The resulting internal coordinates are 
labeled $3, $4 and $6. In the conventions of [7] the z components are given by 

S3z = ~ (Z3 - -  Z M ~- Z 6 - Z g ) ,  
v 

S4 z 1 = 2 ( Z l  - -  Z M  3ff Z 2 -  Z M  3i- Z 4 - -  Z M  -3ff Z 5 - -  Z M )  , (17 )  

S6 z 1 = ~ [ Z  1 - -  Z M - ( Z  2 - Z M )  .31- Z 4 - -  Z M - - ( Z  5 - Z M )  ]. 
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The relationship between internal (Eq. (17)) and external (Eq. (5)) symmetry 
coordinates reads 

&, = s ~, ,o,  - , / ~ s ~ u , ,  

S4p = S:luP - -  2S~.p, ( 1 8 )  

S6p "~- St 2up" 

In view of adiabaticity constraint in Eq. (9), the following identity may be 
shown to hold: 

OY" 
O(ZK -- Z M )  

OZ L O~ OZ M O'~/~ 
= E o(zK - + o(zK - OZo 

OZL O~ _ ~ OZM Of" 
= o ( z ; - - z . . , )  o(z --zM) 

O(Z L -- ZM) O f  

OZK" 
(19) 

Because of this identity the coupling constants for the internal coordinates, 
$3, $4 and $6, will simply coincide with the constants for the corresponding 
absolute ligand displacements, SStlu, Sail, and St2u respectively. Hence one has 

/ q: 07_~___ } = y ' ~ a .  r~ z . ff_aXll*tlu iYztlup(t), \W3p/ 0 i 1 

( 03U" ) =~i A Iyltlup(i), -~4p 0 " ~l ~ At~tluri 

(03U 0 =~i ~l ~ 

that 

(20) 

As before, these terms must now be recombined to yield the vibronic coupling 
constants for the normalized mass-weighted normal coordinates Qv, which 
incorporate the elastic properties of the molecular force field. The relevant 
transformation matrix is usually denoted by the L matrix, and is defined as 

S4p/~- \L43 L44,]\Q4,,]' (21) 

S6p = L66 a6p. 

Unlike the a matrix in Eq. (11), L is non-orthonormal. The linear coupling terms 
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thus become 

(~3p)0 = L33 (~3p)0 +" L43 (O--~4p)0 ' 

34 ~3p)o + 44 (~-~4p)0, (22) 

In order to establish the strict equivalence between these results and the 
outcome of the previous treatment, we first derive the conversion formulae for 
the elements of L and a. This is done by combining Eqs. (11), (15), (18) and 
(21). One readily obtains (with v = 3, 4) 

B x/~a c a~ 
L3v 4 -  , 

A 2a c 
a v  L4v=x//~ x//~,  (23) 

1 
L66 = / - ~ .  

Substitution of the coefficients and derivatives into the right hand side of Eq. 
(22) yields 

(___Q~p) { ( x ~  m 2aC\ / B  ~ ~i ~ AA av __~ ~ . A n  [a~ = let lu i/'-~] T let lu ~ ----7 o " ~ / ~ /  \x/m 

• ~ Al~t2u l l • 
(~--~p6p)O= t~. /~ ,. N / ~  r i Y e t 2 u p ( 1 )  

x / ~ a C ~  
-~ ,/ j r~ Y'e"~(i)' 

(with v = 3, 4; p = x, y, z). (24) 

Furthermore, using Eq. (10), the expressions for the tlu operators in Eq. (24) 
may be rearranged to yield 

( )  A A  B B _ C A C ,  ~vp =~i" ~l ~ (favAMl*tlu~ +~+a'A"t'u uv~t,,,.~jritytt~u,(i). (13his) 

This is precisely the result obtained by Kupka et al. A similar correspondence is 
noted for the t2, operator in Eqs. (14) and (24). In this way the strict equivalence 
of the formalisms in [6] and [7] is established. 

We recall that this result only holds if identical internal symmetry coordinates 
are used in the calculation of the A constants (Eq. (20)) and in the force field 
calculation of the normal modes (Eq. (21)). This point has been overlooked in 
[7]. In this paper the vibronic coupling constants were calculated using the $3, Sa 
and $6 coordinates of Eq. (17), but the conversion to normal modes was based 
on a different set of internal symmetry coordinates, which is of standard use in 
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typical Wilsonian force field studies [13]. In such studies the internal bending 
coordinates are expressed by means of bond angle changes and are normalized 
accordingly. As an example the t2u bending coordinate, $6, is usually defined as 

R.( 
%//~ -Aoq3 + Ao~16 q- Ao~23- Ao~26- ZIo~34-k- Ao~46-}- Ao~35- Ao~56), (25) 

where R0 is the complex radius at equilibrium. The bond angle changes A~j may 
be replaced by cartesian displacement coordinates [14] in the following way: 

Ro A~I3 = - Z  1 --[- Z 0 - X 3 + X 0, 

R0 A~23 = --Z2 -k- Z0 - Y3 + Yo, (26) 

etc. 

Upon substitution the bending coordinate in Eq. (25) is seen to correspond to 
v/2S6z; a similar ~/2 factor is needed for the $4 bending coordinate. Hence the 
corresponding L elements of typical force field studies must be divided by x/~ 
(not to mention possible phase changes) before they can be introduced into the 
present formalism. 

We note that this fact was recognized in the study of Liehr and Ballhausen 
[12] on the Jahn-Teller instability of Eg electronic states; however in [7] the ~/2 
factors were omitted, leading to incorrect numerical results. In order to avoid 
further confusion, the subsequent treatment, including the force field calculations 
in Sect. 4, will be formulated entirely in the absolute coordinate system of Kupka 
et al. 

2.3. General expressions for the intensities of vibronic side bands 

In vibronic intensity calculations for d-d transitions, the vibronic coupling 
operators (~/OQ~p)o are combined with the transition dipole operator to yield 
the so-called forced dipole transition moments. These moments can be con- 
structed in two different ways, depending on the nature of the intermediate states 
that are being invoked. Ballhausen and Liehr [1] proposed to use the dn-~p 
states that originate from exciting a single d electron into the empty p shell. 
Koide and Pryce [2] on the other hand preferred to sum over all allowed 
transitions, thereby adopting the closure approximation. The subsequent discus- 
sion will be focused entirely on the latter formalism. Here we repeat the most 
relevant expressions of the Koide and Pryce method. For a more detailed 
treatment, the reader is referred to the original papers [ 1, 2, 15]. 

In the closure approximation the transition operator is composed of the 
product of the dipole operator and the vibronic coupling operators specified 
previously. As an example, for a y polarized transition induced by a Qvp vibration, 
the electronic transition operator corresponds to ~ey(i)'(O~/OQvp)O. This 
moment must be weighted by a 2/AE parameter, where AE represents the average 
energy gap between the d ~ states and the ungerade intermediate states. As a result, 



Dynamical  crystal field model  95 

the effective electronic transition moment for a F0Y0 ~F?  transition is given by 

Fro~o~r~ = 2 
y ' v p  hE (d"roro I~ ey(i) . (O~r/OQvp)o I d"r~ ). (27) 

i 

If the molecular force field is not seriously affected by the electronic excitation, 
the vibronic intensity will be concentrated in false origins, involving single 
quanta of the allowing odd modes. The relative intensities of these vibronic side 
bands are proportional to the electronic transition element and inversely propor- 
tional to the vibrational angular frequency of the allowing mode [16] symbolized 
as a~v. 

1__ y~ ~ro~o~F~ 
/v  OC ('Or Y07P - y'vp with v = 3, 4, 6. (28) 

In Sect. 4, this expression will be used to compare the intensities of the three 
vibronic satellites of the 4A2g-+ 2Eg transition in hexacoordinated d 3 complexes. 

3. Emission spectra of d 3 complexes 

O c t a h e d r a l  d 3 complexes have a 4.42g ground state and a series of low lying 
doublet states, labeled as 2Eg, 2Tlg, 2T2g. All these states are based on a common 
half-filled shell (hg) 3 configuration. As a result they will be characterized by 
nearly identical force fields [17, 18], a prerequisite for the application of the 
Koide and Pryce intensity formalism. The sharp line phosphorescence spectra of 
the hexahalide complexes of the 3d 3 ions, Cr 3+ and Mn 4+, offer unrivalled 
examples of vibronic coupling in d - d  transitions [19]. Indeed, the most promi- 
nent features of the low temperature spectra arise from a weak magnetic dipole 
allowed pure electronic origin and three strong vibronic origins, corresponding 
to the v3, v4 and v 6 odd parity modes. These features are virtually unaffected by 
changes in the lattice environment. An isolated molecule analysis, assuming the 
tight binding approximation thus appears to be reasonable. 

Specifically for the lowest spin-forbidden transition of 4A2g ~ 2Eg character, 
the bending modes, v4 and v6, seem to be much more effective in promoting 
intensity than the stretching mode v3; this is illustrated in Table 3 [20-25]. It is 

Table 3. Relative intensities for the vibronic side bands in d 3 complexes 

C o m p o u n d  Transit ion Relative intensities a References 

'g6 ~ ~4 ~ 1~3 
K 2 N a A 1 F 6 : C r F  ~ -  4A2g ~2E  e w s :  vs : s [20, 21] 
C s 2 N a l n C 1 6 : C r C 1 6  3 -  4A2g--~2Eg WS: VVS: S [22] 
Cs2MnF6 4A2g~--2Eg 10 : 7.6: I [23] 

4 . 5 : 4  : 1 [7,24] 
C s 2 T e C 1 6 : R e C 1 6  2 -  F8(aA2g) ~ r7(2T2g) 0.5 : 1.8 : 1 [6, 25] 

a Most  spectra were taken at 5 K; vvs = very very strong, vs = very strong, s = s trong 
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noteworthy that in complexes with polyatomic ligands the same type of selectivity 
is observed. As an example, in the luminescence spectra of Cr(NH3)6(C104) 3 the 
vibronic origins involving the N - C r - N  and also the C r - N - H  bending modes are 
an order of magnitude stronger than the Cr-N stretching mode [26, 27]. 

The other transitions of the doublet region do not seem to exhibit the same 
weakness of the v3 false origin. This is illustrated by the 4A2g ~--2Tlg excitation 
spectrum [19] of MnF 2- in Cs2SiF 6. More detailed examples of the same trend 
are present in the spin-forbidden spectra [28, 29] of 4d 3 hexahalides of Mo 3+ and 
Tc 4+. In general these spectra are more intense and have a richer vibronic 
structure, as a result of increased spin-orbit coupling. A case in point is the 
luminescence spectrum of MoC13- in cubic elpasolite crystals [28]. The near- 
infrared luminescence band, of Fs(4AEg)~-/'8(2Eg) signature, shows the charac- 
teristic preference for the bending modes: the v 6 line is extremely strong, the v4 
line is of medium intensity, while the v3 line is at least one order of magnitude 
less intense. In contrast, in the visible luminescence band, attributed to the 
I'8(4A2g)+--i'8(2T2g) transition, the 1"3 stretching mode appears to be the 
strongest promoting mode. Similar observations have been made for the isoelec- 
tronic TcC162- and TcBr26 - ions in various cubic lattices [29]. The loss of 
selectivity is even more pronounced in the spectra [6, 30] of the 5d 3 hexahalides 
of Re 4+. This is illustrated in Table 3 for the Fs(4AEg)~-FT(2T2g) transition of 
ReC12- doped in Cs2TeC16. 

It is well established that all these spin-forbidden bands draw their intensity 
from the nearby 4A2g ~-4T2g(t2geg ) and 4AEg ~--4Tlg(t2geg ) spin-allowed transi- 
tions via spin-orbit coupling. In this respect the Egg state is unique, in that it has 
no spin-orbit interaction element with the 4Tie state, and therefore obtains its 
intensity almost exclusively from the 4A2g--+4T2g transition [31]. This is con- 
firmed by complete ligand field calculations [32] for MnF 2- and MoC13- , using 
values of 400 cm- 1 and 600 cm- ~ respectively for the spin-orbit parameter ~. 

Spin-orbit couPling thus provides a selective mechanism which connects the 
vibronic intensity distribution in the 4AEg~-2Eg emission to the 4A2g~-4T2g 
transition moment. Consequently, the weak activity of the v3 mode in the 
doublet emission implies a preferential coupling to the bending modes in the 
4A2g ~- 4T2g transition. In the favorable case of CrC13- in elpasolite lattices, this 
has been verified by direct measurement of the vibronic origins in the broadband 
fluorescence spectrum from the 4TEg state [33]. The corresponding vibronic 
assignments have recently been confirmed by Giidel and coworkers [34], using 
magnetic circularly polarized luminescence spectroscopy. Accordingly, in the 
subsequent calculations of relative vibronic intensities in the Egg emission of 
Cr 3+, Mn 4+ and Mo 3+ complexes the electronic part of the transition moment 
will be related to the first spin-allowed transition. 

In contrast, the other transitions of the doublet region mix in via spin-orbit 
coupling with both spin-allowed transitions. Their intensity distribution thus 
cannot be attributed to one single quartet band. So far there have been no 
attempts to deconvolute the coupling patterns of the two quartet-quartet transi- 
tions. However, from the observed loss of selectivity, it seems clear that the v3 
stretching mode acquires a strong activity in the second spin-allowed transition. 
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4. Force field calculations 

In order to calculate the transition moment integrals for the v3 and v4 origins, 
one must determine the composition of the two t~, coordinates. In principle this 
composition may vary from the ground to the excited state, giving rise to a 
Dushinski effect in the tlu coordinates. However in the case of  the  4A2g ~ 2Eg 
emission the force fields of  initial and final states nearly coincide. As a result the 
normal mode analysis can be restricted to the  4A2g ground state. 

In the literature different molecular force fields for octahedral hexahalogen 
molecules have been studied [13, 35]. In this section we compare the results, 
paying special attention to the composition of the tl, modes. As a basis for 
comparison we have used a set of recent spectral data, including s o m e  Tc  4+ and 
Re 4+ examples [25, 29, 30, 36]. The observed frequencies are listed in Table 4. In 
all cases, all six fundamentals could be determined from Raman (Vl, Y2, V5), 
infrared (v3, v4) or emission (v I - v4, v6) spectroscopy. 

The normal modes of t~u symmetry are obtained by diagonalizing the force 
field over the three mass-weighted Cartesian displacement coordinates: x/~S~,~p, 
x//-mStni,p, x/~Sctl ,  p. Since the flu interaction matrix is independent of  p, the 
component label will be omitted from the further treatment. In the Cartesian 
space the t~, modes may be written in a vectorial form as (a~, av,S aC), where the 
a coefficients specify the directional cosines as defined in Eq. (11). The tlu 
interaction matrix has one zero eigenvalue, which corresponds to the transla- 
tional mode: A s (at,  at ,  aCt). This mode is normal to the plane of the two internal 
modes Q3 and Q4; it is illustrated in Fig. 3 for the MnF 2- ion. Following Koide 
and Pryce [2], it is convenient to define this plane of  internal modes by two 

Table 4. Observed vibrational frequencies (in cm - t )  for hexafluoride and hexachloride d 3 com- 
plexes a. The values in parentheses are calculated frequencies based on the Urey Bradley force field 
of Table 6 

~1 "¢2 V3 ~4 1~5 V6 References 

KENaGaF6:CrF 3- 575 480 575 330 284 200 [21] 
(574) (447) (592) (305) (307) (202) 

CszMnF 6 592 508 616 332 308 228 [24] 
(592) (484) (628) (310) (327) (227) 

Cs2ReF 6 611 530 535 248 233 180 [30] 
(600) (497) (572) (225) (257) (155) 

Cs2NalnC16:CrC13- 298 240 324 187 139 120 [33, 34] 
(299) (223) (329) (171) (162) (109) 

Cs2NaScC16:MoC13 314 270 298 141 145 118 [26] 
(310) (244) (314) (125) (159) (117) 

Cs2TeC16:TcC1 ~- 333 265 335 178 177 133 [29] 
(332) (259) (338) (172) (184) (127) 

K2ReC16 359 302 315 166 173 129 [25, 36] 
(352) (277) (338) (154) (183) (124) 

Most data were obtained from the 4A2g ~-- 2Eg emission spectra at low temperature 
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orthogonal unit vectors [al ) and [a2), where the components of these vectors are 

]O. > = S0 (.... m ~1/2 __(. 2m_ ~1/2~ 

k M + ~ )  ' kM+Zm) J' 

,f(M" +2m'l'  _(' /' 4,,,,M 'Ut, I,+~> kkv--7--6~m) ' k (M+2m) (M+6m) /  ' - k i : M + 2 ~ + 6 m ) /  J" 
(29) 

Clearly these components are chosen in such a way that lal ) corresponds to the 
mass-weighted internal stretching coordinate $3, given in Eq. (18). However this 
does not imply that ]a2) is oriented along the bending coordinate $4 since the 
two internal symmetry coordinates are not orthogonal. 

An alternative coordinate set, for which collinearity of one of the unit vectors 
with $4 is realized, is given in Eq. (30) 

{( ( 8m 2 ~1/2 + 4m~1/2 (M + -'l- 
l a ] )=  - ( M + 4 m ) ( M + 6 m ) )  ' +~mm) ' - -  4m)(M 6m),] J '  

M 1/2 
l a2)=  { ( M + 4 m )  '0 '  ( 4m "],/2"~ - \ M  +-4m] J" (30) 

Here Icr~) corresponds to the mass-weighted 5:4 coordinate. As indicated in Fig. 
3, the primed set is rotated with respect to the unprimed one over an angle ~, 
which only depends on the ratio of metal and ligand mass. One has 

(o.21 o.,t ) { 8m z "],/z 
tan c( - ~ V ~  - - \ M ( 3 4  7 6 m ) )  " (31) 

SC1u 102> 

/////]-40~ 

SB1u 0"3 I O"L~" 

Fig. 3. a Shows the space of the three mass-weighted tlu displacement coordinates. Q, indicates the 
translational mode for the case of MnF~-. The great circle (al, a2) which is normal to Qt,  contains 
the two internal modes. It is shown in more detail in b. The two possible sets of unit vectors (aj, a2) 
and (a '  1 , a'2) are defined in Eqs. (29) and (30). The rotational angle a between the two sets is - 2 9  °. 
Also indicated are the Q3 and Q4 normal modes which result from a Urey-Bradley force field 
calculation for MnF~-. The angle 0 between Q3 and el is - 7  ° (see Table 5) 
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Table 5. Angular parameters, describing the composition of the t~, coordinates" 
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Complex ~ 0(UBFF) 0A(GHFF) 0B(GHFF) 0o 

CrF~- -30 - 8  -11 -49  -67  
MnF~- -29 - 7  -20  -38 -67 
ReF~- - 13 - 8  +28 -53 -64  
CrCI~ -41 - 8  -15 -66  -71 
MoCI~- -30  - 15 +4 -76  -67  
TcCI~- -30  -11 -23 -37 -67  
ReCI~- -20  -13 - 4  -36  -65 

a All angles are given in degrees. The angle ct corresponds to the difference between the 
(trl, tr2) and (tr], <r~) coordinate frames. The angles 0 describe the rotation of the (Q3, Q4) 
normal modes with respect to the (~rl, tr2) reference frame, as defined in Eq. (32), for 
various force fields. The angle 0 o describes the normal mode with zero octupole character 
as defined in Eq. (39) 

Values for  ~ are given in the first co lumn o f  Table  5. Similarly, the compos i t ion  
of  the actual  normal  modes  03 and Q4 can be described by an angle 0, 
corresponding to a ro ta t ion  of  the (trl, a2) reference frame: 

( Q 3 ) = {  c o s 0  s in0"~{,a l ) ) )  (~rz,Q3) 
Q4 \ - s i n  0 cos O]\]a2 with tan 0 = (~r, I Q3)  . (32) 

Hence  one single angular  pa rame te r  is sufficient to express the compos i t ion  o f  
the tlu modes.  In the following we will investigate how this pa rame te r  varies with 
the force field. The  discussion will be centered on two representat ive force fields: 
the U r e y - B r a d l e y  force field ( U B F F ) ,  and the general ha rmonic  force field 
( G H F F ) .  

4.1. The UBFF 

The U r e y - B r a d l e y  potent ia l  for  an octahedral  complex [35] requires only four  
force constants:  K, H,  F and F ' .  K is the force cons tant  for  stretching a long a 
bond,  H for  an angle deformat ion ,  F and F '  for  the repulsion between neigh- 
bour ing  ligands. The  value o f  F '  is usually much  smaller than F and is somet imes 
taken as - (1 / 10)F. 

The  U B F F  paramet r iza t ion  scheme is summar ized  in Eqs. (33) and (34). As 
usual the eigenvalues of  the force field calculat ions are denoted as 2 = 4n2c2v 2, 
where v is the f requency in cm -~. 

m21 = K + 4F, 

m2z = K + F + 3F' ,  

m25 = 2 ( 2 H  + F - F ' ) ,  
(33) 

mJ.6 = 2H + F + F'. 
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The 23 and 24 eigenvalues must be determined by diagonalizing the qu interaction 
matrix in Eq. (34) 

/ - ~ S  A 1 ~/2 4 
- -  ( 2 H  + F - 3F')  ( F  + F' )  ( 2 F '  - H )  
m m 

v/-mSB W/2m (F + F ' )  m-- (K + 2F + 2F') ~ K 

w/-MS c 4 (2F'  - H)  x/~ 2 (K + 4 H  - 8F')  

(34) 

Optimal fits for the four constants were obtained by a simplex method. The 
resulting parameters are listed in Table 6, and calculated frequencies in Table 4. 
Note that, in spite of  the simplicity of  the force field, there is a fair agreement 
between observed and calculated values. Furthermore,  the F'/F ratio is indeed 
found to be small, and mostly negative. The angular parameter  0, describing the 
composition of the tlu modes, is given in the second column of Table 5. Quite 
remarkably, 0 is nearly constant for all complexes considered, with ~ < 0 < 0. 
This means that the actual normal modes (Q3, Q4) are rotated with respect to the 
(O'1, O"2) reference frame in the direction of the (a'l, try) frame. In this way the 
UBFF  optimizes the overlap between the normal flu modes and the internal tlu 
symmetry coordinates. Similar results may be obtained for the modified UBFF,  
for the Orbital Valence Force Field (OVFF)  of Heath and Linnet, and for the 
corresponding modified OVFF [35]. Clearly in all these cases, the solution of  the 
t~, multiplicity problem is based on a maximal deconvolution of  bending and 
stretching interactions. 

Table 6. Calculated Urey-Bradley force constants (in N m- 1) for the 
complexes in Table 4 

Complex K F H F' 

CrF~- 189 45 2 -3  
MnF 2- 222 42 8 - 1" 
ReF 2- 254 37 - 3 - 5 
CRC136 82 26 0 - 1 
MoC13- 95 26 0.5 1 
TcCI~- 113 29 3 -- 1 
ReC12- 133 31 1 - 1 

a These parameter values for MnF 2- give a slightly better fit than the 
results in [7] 
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4.2. The G H F F  

The G H F F  method takes into account all possible harmonic interactions be- 
tween bond stretchings and angle deformations. G H F F  expressions for octa- 
hedral molecules were developed by Pistorius [37] and the results may be 
summarized as follows: 

m2, = fr  + 4fr r +fr~,, 

m &  = f r  - 2fr~ + f~ ' ,  

M +  6m 

M 

M + 2 m  

m)~3 m)~4 -- - -  [2(f~ -f~,) ( f~ -f~=,,, + 2(f~= -f~=,,)) - 8(fr= -£=021, 

(35) 
16m 

m23 + m)~ 4 - m (Jr - f r r ' )  - ~ - -  ( f ~  --fra") 

2 M  + 8m 
+ (f~ -f~,,,, + 2(f~, -f=~,,,)), 

M 

m25 = 4(f~ -L~, , ' , -  2(f=~,, -L~,,o)), 

m;, 6 = 2(f~ -L~,o - 2 (L  ~ -L=,,)). 

Here the f force constants follow the definitions of [37]. I f £ / i s  neglected, there 
are six independent combinations of force constants to be determined from an 
equal number of frequency expressions. However since one of these expressions 
contains a quadratic term in f ~  - - f r = " ,  two sets of solutions will be obtained; 
these are listed in Table 7. The tl, normal modes can now be obtained by 
inserting the 2 3 and 2 4 eigenvalues in the t~, interaction matrix, given below. 

,F s ,o ,F s< ,/ sc 

. / 5  2 4 
w/~sA," (f~ _f~,.o 2 , ,  (f~, _f~,,,) ( --f= +f=~,,,,- 2f~,~, 

m . 

+ 2f= - 2f=,,) +2f=,, + f ~  -fr~°) 

v~sf, o m~2~2 M ± (f~ - f~r,) ( --fr +f~., 
m 

+4£ ,  - 4fr~,,) 

, / ~ s c o  2 -~  (fr - frr '  - -  8fr~, + 8fr=,, 

+ 4 L  - 4f=,,, 

+ 8 f =  - 8 /=, , )  

(36) 

The 0 angles are listed in Table 5. The column, marked 0a, corresponds to 
the set with smaller f~  - f r , ° ,  while the 0B column refers to solutions with larger 
fr~ - f r ~  o. For most complexes the 0A values show reasonable agreement with the 
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Table 7. Calculated GHFF parameters a (in N m -1) for the complexes in Table 4 

A solution b f~ f~ f ,~ - f~-  f~--L,'- L~--L~- L.'--f~,- 

CrF~- 295 19 23 23 0.2 0.1 
MnF~- 323 17 4 36 4 5 
ReF~- 349 17 -62  41 12 13 
CrCI~ 142 11 17 18 1 4 
MoCI~- 170 9 -31 - 18 - 16 - 15 
TcCI~- 175 14 22 22 2 3 
ReCI~- 217 13 4 5 - 6  - 5  

B solutions ¢ 
CrF63- 295 19 65 48 13 13 
MnF62 323 17 56 47 9 10 
ReF~- 349 17 113 92 37 38 
CrCI63- 142 11 35 79 32 34 
MoC13- 170 9 82 73 29 31 
TcC12- 175 14 30 27 4 5 
ReCI~ 217 13 43 22 3 3 

a The parameter frr' is put equal to zero 
b The A solution corresponds to the smaller value offr~ -fr~-, and is generally considered to be the 
"physical one" 
¢ The B solution corresponds to the larger value offr~ -f~,,, 

U B F F  results. Hence for  the A set, bending  and stretching modes  remain  
approx ima te ly  separa ted  [38]. This is o f  course in line with the small  values for  
the f r ~ - f ~ , ,  bending-s t re tching in terac t ion  constants .  In  con t ras t  the B set is 
quite different, with 0B < a. Hence for  this solut ion the no rma l  modes  are ro ta t ed  
beyond  the (a ' l ,  a~) coord ina te  system. Such a solut ion o f  the tlu mul t ip l ic i ty  
p rob l em can no longer  be character ized as a separa t ion  o f  bending  and stretch- 
ing modes .  I t  ra ther  cor responds  to a separa t ion  o f  electric mult ipoles ,  as will be 
discussed in the next section. 

In  o rde r  to de termine  which o f  the two solut ions  is the "phys i ca l "  one, 
add i t iona l  i n fo rma t ion  is required.  A convenient  cr i ter ion involves compar i son  
o f  the v ibra t iona l  ampl i tudes  calcula ted for  bo th  sets with electron diffract ion 
results  [39]. This has yielded conclusive evidence to reject the 0s solut ions  in the 
case o f  volat i le  c o m p o u n d s  [40, 41] such as W F  6 and U F  6. To our  knowledge  no 
s imilar  compar i son  has been carr ied  out  for the d 3 complexes  under  s tudy.  
Nonetheless  it seems extremely unl ikely that  the elastic proper t ies  o f  these 
complexes  should show a different pat tern .  

In conclusion,  force field calcula t ions  suggest tha t  the compos i t ion  o f  the t~u 
modes  is restr icted to a small  a n g u l a r  interval ,  p re ferab ly  wi th  • < 0 < 0. 

5. Intensity calculations 

In this section we apply  the v ibronic  intensi ty fo rmal i sm to the 4A2g ,,--2Eg 
emission lines in d 3 complexes.  Our  ma in  concern is to expla in  how vibronic  
selectivity can arise. In  principle different selection rules are possible,  depending  
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on the relative strength of the coupling parameters. Before examining these in 
detail, attention is given to some general symmetry aspects. 

5.1. S y m m e t r y  analysis 

As we have shown in Sect. 3, for complexes of moderate spin-orbit coupling 
strength the electronic part of the transition integrals reduces to a matrix element 
over the  4A2g +-4T2g transition. The required elements can easily be calculated 
with tensorial methods, and the results are listed in Table 8. Clearly in the d-only 
approximation, the allowed tensorial ranks of operators connecting two d 3 states 
are limited to 0, 2 and 4. A further restriction arises from the finite group 
selection rule, which states that the total transition operator must transform 
according to the A2g x T2e = Tlg representation of Oh. The octahedral symmetry 

Table 8. Electronic wave functions and matrix elements of the 4A2g ~ 4T2g transition in y 
polarization 

Wave functions a 

[4A2g ) = -[(dyz)(dxz)(dxy)[ 

, , /g l 
I T2.x)=(--~-d~2+~ax2__y~)(dxz)(dx,) 

I l 4 Matrix elementsb: (4A2g [~  ey(i) . ~ r) Y,rp] T2gq) 
i j 

tlu t l  u t2u 

p = z , q = x  p = x , q = z  p = z ,  q-~x 
p = x ,  q = z  

5 1=3 - :__e(r 4) + 5--~e(r4) x//-5 e ( r ' )  
12~/7n 12x/7n 4 2x /~  

5 5 
l= Sa + c--._e(r 6) -- - r._z_e(r 6) + ~ e ( r 6 >  

12x/lln 12x/lln x/231n 

x/-g r 6 x/~ 6 b + ~ e (  ) --4 7 x / ~ e ( r  ) 

a The wavefunctions are defined according to the standard symmetry conventions of 
Griffith (see [31], Tables A20 and A24) 
b Only i = j  elements are allowed. The z components of the spherical harmonic functions 
are defined in Table 1. From these the x components may be obtained following the 
standard symmetry conventions 
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of the allowed tensor operators is 

O--* Alg , 

2--*Eg + TEg, (37) 

4----.~ Alg + Eg + rig + T2g. 

As can be seen from this subduction scheme, a d - d  transition of Tlg symmetry, 
requires an operator of tensorial rank 4. Obviously, the only terms in the 
dynamic crystal-field hamiltonian that may couple with the electric dipole to 
yield such an overall hexadecapole are the 1 = 3 and l = 5 terms. The important 
lowest order l = 1 term, which only occurs for tlu modes (see Table 2), cannot 
contribute to the vibronic intensity. As a result there will be no difference 
between tlu and t2u modes as far as the multipolar character of the vibronic 
coupling operator is concerned. Manson thus concluded that for Azg ~ T2g (and 
A~g ~ T~g) transitions, tl, and t2u vibrations will give rise to comparable vibronic 
intensities [42]. It must be noted though that such a qualitative symmetry 
analysis does not allow one to predict relative vibronic intensities. Such a 
prediction requires a more detailed comparison of the multipole composition of 
each allowing mode. A first mechanism only considers the l = 3 terms. Subse- 
quently the l = 5 terms are included as well. 

5.2. The l = 3 terms 

Hollebone has proposed tentative multipole assignments for the vibrational 
modes, on the basis of their apparent nodal structure [43]. He concluded that the 
t~, stretching mode resembles a dipole, while both the tlu and t2u bending modes 
are predominantly octupolar. Under the assumption that the l = 5 terms are 
negligible, this assignment, in combination with the foregoing symmetry analysis, 
predicts that the v 3 mode cannot induce a d - d  transition of T~g symmetry [44]. 
At present a critical examination of this octupole based selectivity is apparently 
in order. 

As a matter of fact, from the viewpoint of dynamic crystal field theory, there 
is no need to appeal to the type of pictorial arguments used by Hollebone, since 
the multipolar character of a given vibration can be determined directly from its 
crystal field expression. Hence the octupole field of the tlu and t2, modes will be 
given simply by the l = 3 term in the multipole expansions of Eqs. (13) and (14). 
As an example, the octupole coupling parameters for a Q3 mode may be 
rewritten as a function of 0 in the following way: 

aa A ,~ ~ s c c 3 3tlu a3A3tlu a3A3ttu - - - +  - -  + - -  

I 2M+em 1 = 2x/~lqL le2 2x/~ cos 0 + 3 sin O(M + 6m)1/2 (38) 
RSo(7mM + lem 2) 1/2 ~ " 
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Fig. 4. Schematic representation of ligand motions with minimal (l = 1) (a) and maximal (1 = 3) (b) 
octupole character. The + and - signs indicate regions of increasing and decreasing crystal field 
strength respectively. The l = 1 motion with minimal octupole character concentrates all charges on 
one pole and therefore gives rise to a dipolar field. On the other hand, the l = 3 motion is seen to 
generate an electric octupole. Clearly either motion contains both bendings and stretchings and 
therefore cannot coincide with the usual normal modes 

This function will vanish for the 0o angle, given in Eq. (39), and reaches its 
extremal value for 0o _+ z/2.  

(8(2M + 7m)2"~ 1/2 
t a n 0 0 =  - \ 9 M - ~ - M - ~ J  " 

(39) 

The 0o values for the complexes under  consideration are included in Table 5. 
They all lie in a nar row range between - 6 0  ° and - 7 0  °. In Fig. 4 ligand motions  
with maximal  and minimal octupole character are displayed. It is evident f rom 
these drawings that this multipole classification does not  coincide with a separa- 
tion o f  bending and stretching character [45]. This is further illustrated by the 
numerical results in Table 5, which clearly show a large gap between the 0o 
values and the typical angles of  the U B F F  and G H F F  (0A) calculations. 
Interestingly, the only 0 values in Table 5 that  are close to 0o are the B-type 
solutions o f  the G H F F .  However  we recall that  these do not  appear  to occur in 
nature. Hence, and as opposed to Hollebone 's  assumption, the actual Q3 modes 
are not  characterized by a weak octupole term. On the contrary  they usually give 
rise to a somewhat  stronger octupole contr ibut ion than the Q4 mode, as may be 
seen by inserting the respective 0 and 0 + ~/2 values in Eq. (38). We therefore 
must  conclude that an octupole based mechanism cannot  explain the weakness o f  
the v3 origin. 

5.3. Inclusion o f  the 1 = 5 terms 

Since the l = 3 terms do not  give rise to the observed vibronic selectivity, a 
further study of  the possible role o f  the l = 5 terms is needed. Combina t ion  of  
the expressions for the dynamic coupling constants  in Table 2 and the electronic 
matrix elements in Table 8, yields the following general intensity formulae, as a 
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function of  the angle 0: 

1 [ ( c o s O ~ .  ( 2m 0 [ M+6m "~ ,, / ~ + 2 r n  T 1 3 ° c ( 0 ~ _ _ _ M  + 2m)M +s in  ~ / ( ) l ~ - } ~ r n ) , C + c o s  u / ~ m ~  ~ , 

1 1 ( c o s 0  / M+6m / 2m "~f . ,, ~ ]2 
14°c(0-44 ~/-(3J-q--2~4m sinO~/(M+2m)MJ - s m t l  / ~ p , 

/6C• - 
(06 

with 

and 

10 { 5<r4> __ ( ~ 7 ~  
,¢= [qLI e3 \7  Ro 5 + 11 R 0 } 

3/20  <r4> 10 <r6>'~ 
e = l q L  e ~ R~ 11-~o , ] "  (40) 

In this equation the quantities (r4> and <r6> represent radial integrals over the 
d function. The (r4> integral can be obtained directly from the spectrochemical 
strength Dq: 

Dq IqL[e2(r4> (41) 
6R~ 

On the other hand, the (r 6) integral does not occur in expressions for the static 
ligand field of d electrons. While it is sometimes assumed that this integral is 
much smaller [46] than (r4),  it can be argued that - -  exactly as in the case of the 
static ligand field t h e o r y -  attempts to calculate such integrals ab initio are 
deemed to fail as a result of the many approximations of the electrostatic model. 
Hence we consider the ratio Q = <r6>/R2<r4> as a new dynamic parameter, to be 
determined from experiment. In Fig. 5 the relative intensities 14:13 and 16:13 are 
plotted as a function of  Q for the case of MnF 2- , taking the 0 from the UBFF.  
The figure confirms the earlier results that for Q = 0, i.e. in the absence of l = 5 
terms, there is no vibronic selectivity. However with increasing values of Q 
vibronic intensity is rapidly concentrated [47] in the v6 and v4 false origins, in 
qualitative agreement with the experimental selectivity. Indeed if the l = 3 and 
l = 5 terms are of comparable magnitude, the f funct ion  in Eq. (40) will be much 
larger than the p function. As a result the bending modes, with a predominant 
//dependence, will gain intensity while the stretching mode, which is dominated 
by p, will be weakened. For ~ larger than 3 the selectivity decreases again, as the 
l = 5 term becomes gradually more important. Consequently the observed selec- 
tivity must be attributed to the combined effect of the l = 3 and l = 5 terms in the 
dynamic crystal field operator. 

Finally we note that there is only one semi-empirical parameter Q to fit two 
independent intensity ratios 14 : 13 and 16 : 13. The point-charge electrostatic model 
of the dynamic ligand field thus appears to be underparametrized. This is in 
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Fig. 5. Relative intensities of the 
vibronic side bands in MnF~-, plotted 
as a function of Q = (r6~/R~(r4~. The 
functions were calculated from Eq. (40), 
using the UBFF angle 0 = - 7  °. 
Selectivity is absent for Q = 0 
(14:13 =0.6 ,  16:13 =0.3). For Q ~> 1 most 
intensity is concentrated in the side 
bands of the bending modes 

marked contrast with the static crystal field model, where there is one potential 
operator parameter,  lODq, for exactly one phenomenological energy difference 
between eg and t2~ orbitals [48]. 

6. Conclusions 

(i) There is little doubt that the separation of  the odd t~, vibrations in an 
octahedral complex follows a stretching-bending splitting, rather than a dipole- 
octupole one. The evidence comes from concurring results of  the UBFF  and 
G H F F  (0A) calculations. The alternative G H F F  0B solution must be rejected as 
being unphysical. 

(ii) Selective vibronic coupling to the v4 and 1/6 bending modes cannot arise via 
the octupole terms, but is due to the combined effect of  the l = 3 and l -- 5 terms. 
In the intensity expressions for the v3 stretching mode these contributions tend to 
cancel. 

(iii) The role of  the force field in the intensity calculations is contained in the 
angular parameter  0. Extensive comparison of different force fields has shown 
that this parameter  is confined to a narrow range (cf. Table 5). Therefore we can 
eliminate the possibility of  a critical dependence of  the intensity calculations on 
the choice of  force field. 

(iv) It should be kept in mind that our conclusions were derived from a simple 
electrostatic model, using the closure procedure. Alternative or complementary 
models are available, involving d-p  mixing as a source of  intensity [1] and 
dynamic contributions from the ligand polarization mechanism [49-51]. 
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